УДК 538.975

А.А. Ольхова, А.А. Патрикеева, М.А. Бутяева, П.П. Омельченко, Б.К. Шульга, М.М. Сергеев

Национальный исследовательский университет ИТМО, Санкт-Петербург, Российская Федерация

ЛАЗЕРНАЯ МОДИФИКАЦИЯ СТРУКТУРЫ И ОПТИЧЕСКИХ СВОЙСТВ ДВУХСЛОЙНЫХ ПЛЕНОК AG-PBSE

Рассмотрена модификация структуры и оптических свойств двухслойных пленок сереброселенид свинца (Ag-PbSe) в результате воздействия лазерными наносекундными импульсами ближнего ИК-излучения в режиме сканирования. Выявлено формирование микроразмерных фрагментов и наночастиц серебра в результате лазерного облучения, а также их влияние на спектральное пропускание и отражение пленки. Показано, что наличие слоя серебра на пленке PbSe является эффективным способом для улучшения оптических характеристик материала, что расширяет область возможного применения халькогенидных пленок данного состава.

Ключевые слова: халькогенидные плёнки, селенид свинца, наночастицы серебра, лазерное воздействие, структурирование поверхности, наносекундные лазерные импульсы.

A.A. Olkhova, A.A. Patrikeeva, M.A. Butyaeva, P.P. Omelchenko, B.K. Shulga, M.M. Sergeev

National Research University ITMO, St. Petersburg, Russian Fedeation

STRUCTURE AND OPTICAL PROPERTIES LASER MODIFICATION OF THE AG-PBSE FILMS

The modification of the structure and optical properties of two-layer silver-lead selenide (Ag-PbSe) films because of exposure to laser nanosecond pulses of near-infrared radiation in the scanning mode is considered. The formation of micro-sized fragments and silver nanoparticles as a result of laser irradiation, as well as their effect on the spectral transmission and reflection of the film, has been revealed. It is shown that the presence of a silver layer on a PbSe film is an effective way to improve the optical characteristics of the material, which expands the scope of possible applications of chalcogenide films of this composition.

Keywords: chalcogenide films, silver nanoparticles, laser irradiation, surface structuring, nanosecond laser pulses.

Введение

Халькогенидные пленки селенида свинца являются полупроводниковым материалом с уникальными электрическими и оптическими свойствами [1], что делает его объектом интенсивного изучения в различных областях науки [2] и промышленности [3].

Среди основных преимуществ пленок PbSe стоит отметить их высокую чувствительность к инфракрасному излучению [4], благодаря чему они становятся перспективным материалом для применений в области

инфракрасной оптики [5], фотодетекторов [6] и термоэлектрических устройств [7]. Благодаря своим уникальным оптическим свойствам пленки PbSe находят применение в сфере инфракрасной спектроскопии [8], медицинской диагностики [9] и даже в области космических исследований [10].

Предполагается, что нанесение слоя серебра на селенид свинца (PbSe) будет играть ключевую роль в улучшении его электрических характеристик по нескольким причинам:

1. Серебро – металл, поэтому нанесение слоя серебра на поверхность пленки PbSe способствует увеличению электропроводности системы в целом [11].

2. Нанесение слоя серебра может помочь снизить контактное сопротивление между пленкой PbSe и электродом [12], что, в свою очередь, улучшает электрическое соединение и эффективность передачи заряда.

3. Серебро обладает высокой стабильностью и устойчивостью к окислению [13], что способствует его использованию в качестве материала для создания защитного слоя и повышения долговечности пленки PbSe [4].

Последующая лазерная модификация Ag-PbSe позволяет улучшить свойства халькогенидных пленок, включая повышение фоточувствительности [8]. С помощью лазерной обработки можно микроструктуру поверхности изменить пленки, увеличивая поверхностную площадь и обеспечивая лучшее сцепление между пленкой и подложкой. Это позволяет увеличить поглощение инфракрасного излучения и повысить чувствительность детектора [14].

Методика лазерной модификации

Для лазерной модификации структуры пленок Ag-PbSe использовались волоконные импульсные иттербиевые лазеры (рис. 1) с наносекундной длительностью импульсов, частотой их повторения от 2,5 до 100 кГц, длиной волны излучения 1,064 мкм и средней мощностью

излучения до 50 Вт. Движение лазерного пятна в плоскости обработки

задавалось поворотом зеркал сканирующей гальванометрической системы. После зеркал лазерный пучок фокусировался f-theta линзой в плоскость обработки с полем 100×100 мм до диаметра 50 мкм. Максимальная средняя плотность мощности падающего на пленку излучения в режиме лазерного воздействия составляла 2165,6 кВт/см² при длительности и частоте следования импульсов от 4 до 20 нс и от 10 до 285 кГц соответственно. Модификация структуры пленок осуществлялась построчным сканированием при скорости движения лазерного пятна от 5 до 200 мм/с.

Рис. 1. Схема экспериментальной установки для лазерной модификации структуры пленок Ag-PbSe с длиной волны излучения 1,064 мкм

Таблица 1

Режимы модификации пленки Ag-PbSe с помощью импульсного лазерного источника с длиной волны 1064 нм

Наименов ание	<i>v</i> , мм/с	<i>P</i> _{cp} , Вт	<i>z</i> , MM	<i>f</i> , кГц	<i>t</i> , нс	$q_{\scriptscriptstyle \rm ИMII}$, к ${ m Bt/cm^2}$	Перекрытие
Режим 1	200	0,24	4	285	4	670,5	без перекрытия
Режим 2	80	0,46	3	10	8	1144,5	без перекрытия
Режим 3	5	2,72	0	200	20	2165,6	10 л/мм

Здесь P_{cp} – средняя мощность падающего излучения, f – частота следования импульсов, v – скорость сканирования, t – длительность импульсов, z – расстояние от фокуса до поверхности образца, $q_{\rm HMI}$ – импульсная плотность мощности лазерного воздействия.

Методика измерений

Измерение оптических характеристик

Оптическая микроскопия плёнок до и после лазерного воздействия осуществлялась с помощью микроскопа Carl Zeiss Axio Imager (Германия). Исследование проводились в проходящем и отражённом свете, в светлом и тёмном поле. Для более детального исследования использовалась сканирующая электронная микроскопия (CЭM) модифицированных областей с помощью микроскопа Zeiss Merlin (Германия). Отражение и пропускание плёнок PbSe в диапазоне от 400 до 900 нм измерялись с помощью микроскопа-спектрофотометра МСФУ-К Ю-30.54.072, ЛОМО (Санкт-Петербург, Россия) С минимальной областью регистрации до 1 мкм.

Исследование оптических характеристик

Подложки были изготовлены из натрий-кальций-силикатного стекла по ГОСТ EN 572-1-2016 и имеют состав, представленный в табл. 2.

Таблица 2

Компонент	Содержание, %
SiO ₂	69–74
CaO	5–14
Na ₂ O	10–16
MgO	0–6
Al ₂ O ₃	0–3
Содержание других компонентов	0–5

Состав подложки

При облучении пленок наибольшие эффекты лазерного воздействия проявляются при выборе длины волны излучения, которая близка к границе собственного поглощения пленок. Излучение, применяемое в исследовании на длине волны 1064 нм, попадает в область собственного поглощения пленок, что приводит к высокому поглощению падающего излучения при отсутствии пропускания.

В начале исследования был проведен анализ структуры исходных пленок Ag-PbSe. По результатам оптический микроскопии исходный образец имел неструктурированную поверхность, при этом сама пленка содержала рассеивающие свет частицы размером около 100 нм (рис. 2, *в*). Во время формирования слоя Ag на поверхности пленок PbSe происходило образование неоднородностей, в результате формирования которых

возникали нескомпенсированные напряжения, приводящие к образованию трещин на поверхности пленки PbSe после лазерной модификации.

По результатам FESEM-EDX атомный вес серебра в исходной пленке Ag-PbSe составлял 17,02 % (рис. 3), при этом пленка не содержала дополнительных примесей и пики составных элементов образца были достаточно выражены.

Рис. 2. Вид пленки Ag-PbSe до модификации, полученный с помощью оптической микроскопии в отраженном свете светлого поля (*a*) и с помощью детектора вторичных электронов СЭМ (δ , ϵ)

Рис. 3. Изображение FESEM-EDX пленки Ag-PbSe до модификации

При лазерном воздействии в режимах 1–2 наблюдалось появление первичной модификации (рис. 4 и 6). Фототермическое воздействие приводило к термоуплотнению и рекристаллизации [15]. При нагреве образца материал пленки размягчался, в том числе происходило размягчение поверхностной пленки Ag с внедрением частиц в матрицу PbSe [16]. Вследствие резкого нагревания/охлаждения материала образца происходило формирование нескомпенсированных напряжений, что приводило к образованию микротрещин в зоне лазерного воздействия. В результате увеличения плотности мощности лазерного воздействия более интенсивное формирование микротрещин можно наблюдать при обработки пленки в режиме 2.

Изображение FESEM пленок до и после лазерной обработки в режимах 1–2, показано на рис. 5 и 7, отсутствие дополнительных химических элементов в составе образца свидетельствует о том, что процесс лазерной модификации не сопровождался истончением образца. Лазерная модификация пленки в режиме 1 приводила к уменьшению атомной концентрации серебра на 7,56 % по сравнению с исходной пленкой. Воздействие лазерного излучения на образец в режиме 2 приводило к полному удалению Ag с поверхности пленки Ag-PbSe. Таким образом фототермическая обработка образцов с помощью импульсного излучения на длине волны 1064 нм может приводить к неконтролируемому изменению концентрации серебра на поверхности образца, при этом увеличение плотности мощности лазерного воздействия приводит к уменьшению концентрации Ag вплоть до полного удаления с поверхности образца.

Рис. 4. Вид пленки Ag-PbSe после модификации в режиме № 1, полученный с помощью оптической микроскопии в отраженном свете светлого поля (*a*) и с помощью детектора вторичных электронов СЭМ (*б*, *в*)

Рис. 5. Изображение FESEM-EDX Ag-PbSe после модификации в режиме № 1

Рис. 6. Вид пленки Ag-PbSe после модификации в режиме № 2, полученный с помощью оптической микроскопии в отраженном свете светлого поля (*a*) и с помощью детектора вторичных электронов СЭМ (*б*, *в*)

Рис. 7. Изображение FESEM-EDX Ag-PbSe после модификации в режиме № 2

Повышение плотности мощности лазерного воздействия относительно режимов 1 и 2 приводило к модификации структуры пленки (рис. 8), при которой лазерное излучение способствовало локальному нагреву поверхности пленки серебра. Таким образом лазерная обработка в режиме 3 приводила к агломерации и фрагментации металлических частиц, в результате этого процесса образовывались наночастицы серебра с различными размерами и структурами.

Стоит отметить, что лазерная модификация образца в режимах 1–3 не приводила к разрушениям в области сканирования и не изменяла свойства исходной пленки между треками, но вызывала плавление и способствовала перераспределению расплавленного материала.

Также по СЭМ изображениям пленок Ag-PbSe, обработанных в режиме 3, в зоне лазерного воздействия можно наблюдать наличие темных и светлых гребней, характеризующихся различной плотностью материала. Более плотные светлые гребни формировались за счет перераспределения материала и обеднения соседней темной области трека, которая была менее плотной.

Изображение FESEM-EDX пленок до и после лазерной обработки в режимах 4 показано на рис. 9. Наличие в пленке элементов, характерных для покровного стекла подложки, свидетельствует об истончении пленки в области сканирования лазерным пятном. Также наличие в составе пленке составных элементов подложки может быть следствием их диффузии из подложки в пленку. При этом лазерная обработка в режиме 3 так же, как и в режиме 2, приводила к полному удалению пленки Ag с поверхности PbSe.

Рис. 8. Вид пленки Ag-PbSe после модификации в режиме № 3, полученный с помощью оптической микроскопии в отраженном свете светлого поля (*a*, *б*) и с помощью детектора вторичных электронов СЭМ (*в*, *г*)

Рис. 9. Изображение FESEM-EDX пленок Ag-PbSe после модификации в режиме № 3

Ниже представлены спектры отражения (рис. 10) пленок в видимом диапазоне спектра для образцов, прошедших различные виды обработки. Наименьшим отражением, практически во всем измеряемом диапазоне длин волн, обладали образцы, подвергшиеся лазерной модификации в режиме 1-2. При этом отражение пленки Ag-PbSe после обработки в режиме 1 снижалось на 15-28 % и не превышало 5 %, а после модификации в режиме 2 отражение достигало 2-5 %. В случае повышения плотности мощности лазерного воздействия на пленки снижение отражения наблюдалось на 6-13 %, однако лазерная модификация в режиме 3 также приводила к наибольшему росту пропускания практически во всем измеряемом спектральном диапазоне, пропускание составляло 15-20 %. Данная тенденция может быть связана с истончением пленки и частичной абляцией материала. При обработке в режимах 1-2 был использован менее разрушающий режим, вследствие чего пленка после модификации имела коэффициент пропускания, близкий к нулевому. Таким образом, наилучший результат был достигнут при лазерной обработке в режимах 1-2.

Рис. 10. Спектры отражения, полученные для исходного образца, образца Ag-PbSe и образцов Ag-PbSe после лазерной модификации в режимах 1–3

Заключение

Сравнены режимы 1–3 модификации оптических свойств пленок Ag-PbSe.

Использование импульсного лазерного источника небольшой мощности (до 25 мВт) является перспективным подходом для точной модификации полупроводниковых Контролируемая пленок. температура обработки минимизирует тепловое воздействие И позволяет создавать микро-И наноструктуры высокой c пространственной разрешающей способностью до 100 лин/мм. Такой подход имеет большой потенциал для применения в области разработки новых устройств и технологий, требующих высокой точности и надежности при модификации полупроводниковых пленок.

Следует отметить, что наибольшее снижения отражения было достигнуто в режимах 1–2, что свидетельствует о лучшей применимости в устройствах фотодетекторов. При модификации в режиме 3 отмечено не столь сильное снижение отражения, как в режимах 1–2, при этом зафиксирован наибольший рост пропускания в видимой области

спектра, что связано с частичной абляцией образца. Таким образом, наилучший результат оптической модификации был достигнут при лазерной обработке в режимах 1–2.

Было показано, что нанесение пленки серебра на поверхность PbSe является эффективным способом для улучшения его оптических характеристик и расширения спектра потенциального применения этого материала в различных технологических областях.

Список литературы

1. Optoelectronic properties of PbSe monolayers from first-principles / B.U. Haq [et al.] // Applied Surface Science. – 2020. – Vol. 525. – P. 146521.

2. Grayer, J. Embedded surface plasmon resonant disc arrays for improved MWIR sensitivity and increased operating temperature of PbSe photoconductive detectors / J. Grayer, S. Ganguly, S.S. Yoo // Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII. – International Society for Optics and Photonics. – 2019. – Vol. 11082. – P. 1108224.

3. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings / B. Weng [et al.] // Applied Physics Letters. – 2014. – Vol. 104, no. 2. – P. 021109.

4. Gupta, M.C. Photoconductive PbSe thin films for infrared imaging / M.C. Gupta, J.T. Harrison, M.T. Islam // Materials Advances. -2021. - Vol. 2, no. 10. - P. 3133 - 3160.

5. Third-order nonlinear optical properties of infrared emitting PbS and PbSe quantum dots / D. Wawrzynczyk [et al.] // The Journal of Physical Chemistry C. -2016. - Vol. 120, no. 38. - P. 21939–21945.

6. Infrared detectors based on semiconductor p-n junction of PbSe / V. Kasiyan [et al.]. $-\,2012.$

7. Thermoelectric prospects of chemically deposited PbSe and SnSe thin films / P.K. Nair [et al.] // Semiconductor Science and Technology. -2018. - Vol. 33, no. 3. - P. 035004.

8. Properties of chemical bath deposited and sensitized PbSe thin films for IR detection / M.H. Jang [et al.] // Semiconductor Science and Technology. -2019. - Vol. 34, no. 11. - P. 115010.

9. McDowell, L.L. CdSe/PbSe high-temperature mid-infrared heterostructure photovoltaic photodetector / L.L. McDowell, M.R. Mirzaei, Z. Shi // Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVI. – SPIE, 2023. – C. PC124200K.

10. Tribological properties and bearing application of Mo-based films in space environment / J. Shi [et al.] // Vacuum. – 2021. – Vol. 188. – P. 110217.

11. Charge transport modulation in PbSe nanocrystal solids by Au x Ag1–x nanoparticle doping / H. Yang [et al.] // ACS nano. -2018. - Vol. 12, no. 9. - P. 9091–9100.

12. Mid-wavelength infrared photo response and band alignment for sensitized PbSe thin films / M.H. Jang [et al.] // Journal of Applied Physics. -2019. - Vol. 126, no. 10.

13. Oxidation-resistant silver nanostructures for ultrastable plasmonic applications / R. Sachan [et al.] // Advanced Materials. – 2013. – Vol. 25, no. 14. – P. 2045–2050.

14. Ahmed, R. Mid-infrared photoresponse of electrodeposited PbSe thin films by laser processing and sensitization / R. Ahmed, M.C. Gupta // Optics and Lasers in Engineering. -2020. – Vol. 134. – P. 106299.

15. Pulsed laser annealing of thin films of self-assembled nanocrystals / W.J. Baumgardner [et al.] // ACS nano. – 2011. – Vol. 5, no. 9. – P. 7010–7019.

16. Al-Ghamdi, A.A. Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films / A.A. Al-Ghamdi, S. Al-Heniti, S.A. Khan // Journal of luminescence. – 2013. – Vol. 135. – P. 295–300.